One-step screening of active hepatitis C virus infection in the community through dried blood spots

V. Saludes¹,², C. Folch²,³, A. Morales-Carmona⁴, L. Ferrer²,³, L. Fernández²,³, R. Muñoz²,³, M. Jiménez¹, E. Loureiro²,³, P. Fernández-Dávila³,⁴, E. Bascuñana¹, J. Casabona²,³ and E. Martró¹,²,*

HEPATITIS-C Community Summit
Amsterdam 18/19 April 2017

Research Group on Clinical Virology and New Diagnostic Approaches
Microbiology Service, Germans Trias i Pujol University Hospital
Germans Trias i Pujol Health Sciences Research Institute (IGTP)
Badalona (Barcelona), Spain. emartro@igtp.cat
Fighting HCV: Relevance of alternative community outreach strategies

- Promoting HCV diagnosis is a global priority
 Spain: 70% undiagnosed

- Complex two-step testing algorithm for the diagnosis of hepatitis C:

 Serology (primary care) → Molecular confirmation by a specialist
 Previous exposure → Viremic infection

 Costly, requires venipuncture, cool chain, several return visits
 Problematic in hard-to-reach populations at risk

Screening strategies through community outreach and alternative testing in high-risk groups should complement those performed in healthcare settings. The use of dried blood spots (DBS) facilitate access to HCV testing.
Sexual HCV transmission may not be restricted to HIV-infected men who have sex with men (MSM)

- HCV infection has emerged as a sexually-transmitted infection (STI) among HIV-positive MSM with outbreaks of acute infection in large cities around the world, including Barcelona and Madrid.

Main determinants:
- HIV infection, ulcerative STIs (i.e. syphilis)
- Sexual behaviors (unprotected anal sex, traumatic practices, etc), drug use for sex.

Increasing HCV incidence HIV-negative MSM in large cities in Europe, the US, Asia
- Seldom screened for HCV in Spain.

Scarce data on male sex workers (MSW) and transsexual women sex workers (TWSW)
- Limited access to screening programs and healthcare system (mostly migrants).
- High-risk of STIs, increasing HIV prevalence.

⇒ Community HCV screening among HIV-negative MSM, MSW and TWSW is needed in Spain
Goals of the *HepCdetect* Study

1. To develop an **HCV-RNA detection assay in DBS** as a **one-step screening and confirmatory strategy**.
 - ⇒ Simplification of the HCV diagnostic algorithm, detection of acute & chronic inf.

2. To assess the **feasibility and benefit of this strategy in a community centre attending hard-to-reach populations at risk** (MSW, TWSW, and HIV-negative MSM).
 - ⇒ Improvement of access to HCV diagnosis, identification of silent cases

3. To **provide local HCV epidemiological and bio-behavioural data** in these populations.
 - ⇒ Evidence-based policy making
1. Laboratory set up of an *in house* molecular assay for the detection of the HCV-RNA in dried blood spots (DBS)

- DBS collection, drying & storage at room temp.
- Elution/Lysis & Addition of internal control
- Automatic RNA extraction (easyMAG, BioMérieux)
- Amplification mix* & RNA addition
- Detection of HCV-RNA and Int. control by real time RT-PCR

Primers and probe detect all HCV genotypes [Daniel. Diagn Microbiol Infect Dis 2008]

Major modifications in order to simplify the process:
- single-step RT-PCR
- use of a commercial internal RNA control
2. Laboratory validation of the HCV-RNA detection assay in DBS

- **Lower limit of detection:** 541 IU/mL (95% CI, 378-705 IU/mL)

- **Intra-assay and inter-assay variability** ≤ 2.6%

<table>
<thead>
<tr>
<th></th>
<th>Mean Ct</th>
<th>Standard deviation</th>
<th>Maximum Ct</th>
<th>Minimum Ct</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-assay variability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target HCV-RNA</td>
<td>35.30</td>
<td>0.90</td>
<td>36.46</td>
<td>33.65</td>
<td>0.026</td>
</tr>
<tr>
<td>Internal control RNA</td>
<td>29.00</td>
<td>0.48</td>
<td>29.51</td>
<td>27.96</td>
<td>0.017</td>
</tr>
<tr>
<td>Inter-assay variability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target HCV-RNA</td>
<td>35.26</td>
<td>0.92</td>
<td>36.27</td>
<td>33.68</td>
<td>0.026</td>
</tr>
<tr>
<td>Internal control RNA</td>
<td>29.04</td>
<td>0.58</td>
<td>30.51</td>
<td>28.43</td>
<td>0.020</td>
</tr>
</tbody>
</table>

The assay is precise and reproducible and **DBS are stable at room temperature for at least 2 months**

- **Clinical sensitivity and specificity:** 100%

Viral load range: 3.92-7.48 log_{10} UI/mL (Abbott Molecular)
Community study design

- **Community-based voluntary counselling and testing centre:**
 Gay district in Barcelona
 Anonymous rapid HIV (Ag/Ab) and syphilis (Ab) testing
 HCV testing offered for the first time for the HepCdetect study

- **Study populations:** MSM, MSW, TWSW

- **Study period:** January 2015 to March 2016

- **Exclusion criteria:** < 18 years old
 Previous hepatitis C diagnosis: excluded from testing, questionnaire administered

- **HCV testing was announced:**
 Poster and flyers in gay venues,
 StopSida website, CBVCT centres network,
 Social networks, Apps
Community agents were trained in sample collection, HCV testing and counseling.

- **Written informed consent**
- **Anonymous questionnaire:**
 - Socio-demographic characteristics
 - Sexual practices
 - Drug use
 - Previous diagnosis of HCV/HIV/STIs

- **Bio-behavioural data analysis**

Two-step HCV screening:

- **OraQuick HCV Rapid Antibody test in fingerpick blood**
- **Referral** of positives for **confirmation of HCV-RNA in plasma** at a nearby laboratory

One-step HCV screening:

- **DBS collection** from fingerpick blood
- **Weekly shipment to the lab at RT for HCV-RNA testing**
Study subjects and HCV tests results

Individuals offered to participate: N=617 (677 instances)

- Accepted to participate: 580 individuals (653 tests; 60 repeated)
 - Acceptability = 95.2%
 - MSM 73.6%
 - MSW 10.2%
 - TWSW 13.2%

- Did not accept: 29 individuals (32 instances)

Previous HCV diagnosis: n=4
 (HIV-neg MSM)

Self-reported HCV prevalence:
 Overall = 0.68%
 HIV-negative MSM = 0.75%

Rapid HCV antibody test: 100% non-reactive

DBS based HCV-RNA test:
- Invalid results: n=26 (4%) technical problems in sample collection or processing
- Negative: n=622
- Positive: n=5 → 1 lost follow-up, 1 negative DBS retesting, 3 negative HCV viral load in plasma
 ≥99.2% specificity when screening such low-prevalence populations

No silent hepatitis C cases were confirmed
Epidemiological and behavioral characteristics of participants

<table>
<thead>
<tr>
<th></th>
<th>MSM</th>
<th>MSW</th>
<th>TWSW</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>419</td>
<td>58</td>
<td>92</td>
<td>569</td>
</tr>
<tr>
<td>Mean age (yr)**</td>
<td>34.2</td>
<td>27.7</td>
<td>30.8</td>
<td>33.0</td>
</tr>
<tr>
<td>Foreign origin**</td>
<td>32.5</td>
<td>79.3</td>
<td>94.6</td>
<td>47.3</td>
</tr>
<tr>
<td>High education level**</td>
<td>67.6</td>
<td>23.9</td>
<td>5.6</td>
<td>55.1</td>
</tr>
<tr>
<td>Condomless receptive anal intercourse (non-steady partner)*</td>
<td>30.5</td>
<td>30.6</td>
<td>60.0</td>
<td>31.8</td>
</tr>
<tr>
<td>Condomless receptive anal intercourse (clients)</td>
<td>—</td>
<td>5.6</td>
<td>7.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Group sex (non-steady partner)*</td>
<td>43.6</td>
<td>36.1</td>
<td>5.0</td>
<td>41.3</td>
</tr>
<tr>
<td>Group sex (client)*</td>
<td>—</td>
<td>38.9</td>
<td>15.5</td>
<td>23.4</td>
</tr>
<tr>
<td>Sharing of dildos or sex toys</td>
<td>13.4</td>
<td>17.0</td>
<td>23.6</td>
<td>15.1</td>
</tr>
<tr>
<td>Rectal douching before penetration or fisting**</td>
<td>30.9</td>
<td>23.5</td>
<td>66.2</td>
<td>35.3</td>
</tr>
<tr>
<td>Drug use for sex**</td>
<td>55.2</td>
<td>70.7</td>
<td>93.2</td>
<td>59.9</td>
</tr>
<tr>
<td>HIV (self-reported + positive rapid test) (19 new diagnoses)</td>
<td>4.8</td>
<td>10.3</td>
<td>9.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Syphilis (self-reported + positive Ab rapid test)**</td>
<td>5.0</td>
<td>13.8</td>
<td>13.3</td>
<td>7.2</td>
</tr>
<tr>
<td>Gonorrhoea**</td>
<td>6.6</td>
<td>19.1</td>
<td>1.4</td>
<td>7.0</td>
</tr>
<tr>
<td>Any STI* in the last 12 mo. (other than HIV)**</td>
<td>16.0</td>
<td>36.2</td>
<td>11.3</td>
<td>17.2</td>
</tr>
</tbody>
</table>

**p<0.001, *p<0.05 among groups.

* Any STI including syphilis, gonorrhoea, chlamydia, genital warts, herpes simplex virus, and hepatitis B virus.

Only one TWSW participant reported having injected drugs in her life.
Conclusions

- The HCV-RNA detection assay showed a good performance in DBS.

- This one-step screening and confirmatory strategy was easily implemented and well accepted in the community centre.

- As no silent HCV infections were confirmed, this strategy does not seem currently appropriate in this setting.

- Given the observed high-risk behaviours and prevalence of other STIs, HCV could eventually spread among MSW, TWSW and HIV-negative MSM in Barcelona.

- Sentinel populations should be periodically monitored by risk assessment and rapid antibody testing, while DBS HCV-RNA testing could be useful to facilitate confirmation of antibody positive cases.
The usefulness of this one-step diagnostic strategy is warranted in PWID, and will allow the HRC personnel to focus their efforts on those who really need it, facilitating their linkage to care.
Acknowledgements

POLICY MAKERS
- Generalitat de Catalunya
 - Agència de Salut Pública de Catalunya
 - Subdirecció General de Drogodependències
- StopSida
- Harm-reduction centers:
 - El Local-IPPS
 - AIDE ONG
 - Fundació AMBIT Prevenció
 - AEC GRIS Fundació Privada

COMMUNITY
- All study participants

HepCdetect studies

RESEARCH
- CEEIS-Cat
 - Centre d’Estudis Epièdèmics sobre les Infeccions de Transmissió Sexual i Addicció
- Germans Trias i Pujol Hospital
- Clinical Virology and New Diagnostic Approaches Research Group
 - Verónica Saludes
 - Percy Fernández
 - Eva Loureiro
 - Jordi Casabona (Dir.)
- Adrián Antuori
- Elisabet Bascuñana
- Elisa Martró (PI)
 - Cinta Folch
 - Laura Fernández
 - Laia Ferrer
 - Rafael Muñoz
 - Eva Loureiro
 - Jordi Casabona (Dir.)
 - Cinta Folch
 - Laura Fernández
 - Laia Ferrer
 - Rafael Muñoz
 - Eva Loureiro
 - Jordi Casabona (Dir.)

Funded by:
- Gilead Fellowship Program
- Ciberesp
- Ministerio de Economía y Competitividad
- Instituto de Salud Carlos III